Closed Loop Magnetic Levitation Control of a Rotary Inductrack System

(CLMLCRIS)

Senior Project Final Report

Students:

Corey West Austin Collins

Advisors: Mr. S. Gutschlag Dr. Y. Lu Dr. W. Anakwa

Date: May 16, 2013 *abstract* – There are currently bullet trains that are using magnetic levitation to travel more efficiently for long distances than planes or regular trains. These trains work by inducing a current in the track from an on-board generator in the train. This method of producing levitation is not very energy efficient. A permanent magnet is used to induce a current in the inductrack instead of the generator to improve efficiency. This project is a continuation of a project done last year. There will be an FPGA added to control the system, thereby making it stand-alone. A circuit is designed to control the motor speed by using a pulse-width modulation (PWM) signal generated by an FPGA. The user will input a desired levitation height into the FPGA which will be converted to a velocity from a look-up table. This is the required motor velocity to reach the levitation height set by the user.

Table of Contents

Background	3
Magnetic Levitation	3
Halbach Array and Inductrack Theory	3
CLMLCRIS Project	4
Current Project	4
Controller	4
Project Objective	5
Power Electronics	6
Analog Circuitry	6
Pittman Motor Results	7
FPGA	8
Rotary Encoder	8
Pulse Counter	9
Look-Up Tables	9
Controller	10
Pulse-Width Modulation	12
Conclusion	13
Appendix A	14
Appendix B	15
Appendix C	16

Background

Magnetic Levitation

Magnetic Levitation has been around since as early as 1984. The purpose of this differentiation from traditional methods was to remove efficiency losses due to friction. There are two currently used methods to achieve magnetic levitation (hereby referred to as "maglev") for trains. The first is electromagnetic suspension and the other is electrodynamic suspension, but both of these methods demand power to achieve maglev. The method using an inductrack is a newer method that is based on a passive system. Using this method could offer a better form of transportation than the current methods. Dr. Richard Post was responsible for developing the inductrack method, as well as deriving the equations used to understand the system.

Halbach Array and Inductrack Theory

A Halbach Array is a group of magnets which are each aligned in a specific pattern to direct all of the magnets' magnetic fields below the array. Figure 1 displays the alignment as well as the direction of the magnetic fields of the magnets.

Figure 1 Halbach Array Magnetic Fields

The inductrack is a group of inductors designed specifically to interact with the Halbach Array. When the inductrack rotates beneath the Halbach Array, the changing magnetic field induces a magnetic flux around the inductrack, which generates a current and voltage along the inductrack. As the speed of the system increases, the phase lag increases and allows the two magnetic fields generated to align. This process can be seen in Figure 2. The dial represents velocity, which increases in each picture showing how the magnetic poles align and cause the magnetic levitation.

Figure 2 Magnetic Repulsion

CLMLCRIS Project

Current System

The maglev project is fully functional because of all the work done by students in previous years. At the beginning of this project, the system could be run by just applying a voltage to the motor. As the voltage was increased, the speed of the motor increased, thus increasing the displacement between the Halbach Array and inductrack. A safety enclosure has also been added to the system. Figure 3 shows the full system, which can be found in the Power Lab at Bradley University.

Figure 3 Maglev System with Safety Enclosure

Controller

During the previous iteration of this project, the team was able to develop a controller that takes a user's desired levitation height along with the current velocity of the system to control the levitation height. It is a discrete time controller with a sampling time of 0.01s and is given by

$$C(z) = \frac{0.5453 - 0.5396z^{-1}}{1 - 1.463z^{-1} + 0.4634z^{-2}} \quad (1)$$

This transfer function must be written as a difference equation to allow implementation on the chosen platform.

$$u(k) - 1.463u(k-1) - 0.4634u(k-2) = 0.5453e(k) - 0.5369e(k-1)$$
(2)

Project Objective

The CLMLCRIS project is based on work done by the previous years' students. It will use both experimental data and the controller developed last year. The original goals of the CLMLCRIS project are listed below.

Goals:

• Selection of a suitable platform for controller implementation which will allow a user to enter desired levitation height

• Selection and design of appropriate power electronics which will allow control of the motor with a PWM signal

• Use of the selected platform to generate a PWM signal to drive the power electronics to obtain a relationship between PWM duty cycle and motor speed experimentally

• Selection and installation of a motor speed sensor which will allow feedback of motor velocity to the controller

- Feedback of actual levitation height to the controller for display
- Implementation of a classical digital control law

• Conversion of the control signal to a PWM signal to drive the power electronics to control the motor

• A standalone system

The project was split up into two parts. First, an analog circuit was built to control the motor speed with a PWM signal. While this circuit was being built, the controller was being implemented on an FPGA to handle user inputs and to obtain proper levitation height by using motor velocity. The full system block diagram can is shown in Figure 4.

Fig. 4 High Level Block Diagram of System

Power Electronics

Analog Circuitry

Fig. 5 Analog Circuit to Control Motor

Figure 5 shows the analog circuit designed to run the motor with a PWM signal.

$$R_g = 3120_{vout}/3120_{Imax}$$
 (3)
 $I_i = 3.3 - 1.1/R_i$ (4)

From equations 3 and 4 the two resistor values were found for the circuit. The output voltage from the 3120 will be 2-3 volts less than the source voltage provided to the chip. This means that the output voltage from the 3120 is 18V. The max current from the 3120 is 2.5A, so the current that comes out of the 3120 must be limited. This is done by adding Rg. Rg is found to be about 10 ohms. To find the value of Ri, the 1.1V voltage drop over the diode is subtracted from the 3.3V. These voltages will be divided by Ri to make sure that the current will be less than 20 mA, so the FPGA will not be damaged.

The data sheet for the 3120 optocoupler that was used can be found in Appendix A. The IRF520N MOSFET was used in the circuit to control a Pittman motor and then changed to the FB180 MOSFET to control the larger motor in Power Lab. The freewheeling diode shown in Figure 5 is used to dissipate the power from the motor when the MOSFET is turned off. If this diode is not there, the power would dissipate through the MOSFET and damage it.

Results from Pitman Motor

In Figures 6-8, the yellow waveform represents the input PWM signal in our analog circuit. The green waveform is the output of the 3120 and the purple waveform is the voltage across the drain of the MOSFET. The duty cycles are inversed because of the circuit, so 80% duty cycle is actually 20%. This is confirmed by the oscilloscope results in Figures 6-8. The drain voltage is 0 whenever the output from the 3120 is high. When the 3120 shuts off, the voltage across the drain will be whatever voltage is supplied to the motor plus 1V from the voltage drop across the diode. When the voltage drops again, it is measuring the back EMF voltage from the motor. As the velocity from the motor increases the back EMF decreases. The circuit was built to show that the motor velocity could be controlled using a PWM signal. Figure 9 shows a Pittman motor being spun by the power electronics and PWM provided by the waveform generator.

Figure 9 Power Electronics with Pittman Motor

FPGA

Fig. 10 FPGA Functional Diagram

The controller platform that was chosen for this project is the Spartan 3E board. Figure 10 shows what the FPGA will be used for. The user will input a desired levitation height which will be converted into desired velocity through a look-up table. The desired velocity will be compared to the current velocity of the motor to find the error. The error is the input signal to the controller. The controller output is the voltage needed to achieve the desired levitation height. Finally, the required voltage is converted to a PWM signal that drives the power electronics.

Rotary Encoder

On board the Spartan 3E is a rotary encoder that is being used to enter the desired levitation height into the system. The user enters their desired height by turning the knob clockwise, increasing the desired displacement by 1mm every notch. The value being input to the controller is displayed on the on board LCD screen. Code for initializing the LCD screen and the use of the rotary encoder was provided by Dr. Lu. The code was then slightly modified to limit the desired displacement to a maximum of 5.85mm and the LCD was altered to allow the binary coded decimal (BCD) value to be placed on screen with a decimal after the first digit. The code can be found in Appendix B. Figure 11 shows the LCD displaying the current value of the counter which was incremented by the rotary encoder.

Figure 11 LCD Display of Rotary Encoder

Pulse Counter

To read the feedback from the optical encoder, a module to read the output pulses was needed. A pulse counter was found on the VHDL Guru site, which was then modified to accommodate the specifics in the maglev project. The module is able to read an incoming pulse and determine the period of the pulse. A simulation of the module is shown in Figure 12.

Figure 12 ISim Simulation of Pulse Counter

Look-Up Tables

There were three look-up tables (LUTs) created for this project. The first was used to convert the desired displacement value to the desired velocity value. This was done using an equation provided by the previous group that worked on the maglev project. Equation 5 shows displacement as a function of electrical frequency.

$$y(\omega_e) = 0.002228 * ln(\frac{232.69}{1 + \frac{9.55 * 10^6}{\omega_e^2}})$$
(5)

Equation 5 was then reversed to find electrical frequency as a function of displacement which is given by Equation 6.

$$\omega_e = \sqrt{\frac{9.55 * 10^6}{-1 + 232.69e^{\frac{-y}{0.002228}}}} \tag{6}$$

Equation 6 was used to find electrical frequency which was multiplied by a factor of 51.29 to convert to desired velocity of the motor. Matlab was used to generate the LUT array and the array was formatted for use in Xilinx.

The next LUT used was for the conversion of the period of the incoming pulses to frequency. To find the error between the desired velocity and current velocity, the current velocity needs to be in the form of radians per second. Matlab was once again used to create an array with a depth of 1001 to accommodate all the possible inputs to the LUT. The reciprocal of each possible period was calculated and stored in the array.

The last LUT created was used to convert the desired voltage output from the controller into a PWM duty cycle. Equation 7 was used to find the PWM duty cycle based on the desired voltage.

$$\frac{DutyCycle}{100} = \frac{DesiredVoltage}{115} \tag{7}$$

All LUT code can be found in Appendix B.

Controller

The controller discussed earlier was the most complex module. The module itself was not coded, but generated through the use of the Xilinx block set available through Simulink. A Simulink model provided by Dr. Anakwa contained the discrete time transfer function with a motor model to simulate the full system. The model is shown in Figure 13.

Figure 13 Discrete Time Controller and Motor Model

After verifying that every component was accurate according to the working system, the model was converted to a Xilinx block set. Dr. Lu assisted with this process and afterwards the discrete time model in Figure 13 was converted to the Xilinx block set in Figure 14.

Figure 14 Controller Simulink Model with Xilinx Block Set

After the model in Figure 14 was built, the Xilinx System Generator was used to generate the code for the Controller Module. For verification purposes, both the transfer function and Xilinx versions of the controller were compared on a scope to test the outputs. Both systems produced close results for an input of 5.85mm. The scope results can be viewed in Figure 15.

Figure 15 Outputs from Controller Models

Once the VHDL code had been generated, the module was tested in simulation using a test bench and ISim. The results from ISim are shown in Figure 16.

Figure 16 Controller Simulation in ISim

The important signals in Figure 16 are idesired_disp, ifeedback, and opwm_duty. The signal idesired_disp was used for the controller's desired velocity input. The signal ifeedback was used for the current velocity of the motor. The opwm_duty signal was the output voltage calculated by the controller. When idesired_disp is set to 3.88mm, the feedback steadily increases as the motor speeds up and the controller is producing an output of 41.75V. These numbers were very accurate according to the experimental results produced by the previous maglev group. The code for the controller can be found in Appendix B and the experimental results can be found in Appendix C.

Pulse-Width Modulation

A PWM module was created to control the power electronics. The PWM module was designed to receive an input value and produce a PWM with a duty cycle according to the input. The flowchart for the module is shown in Figure 17.

Figure 17 PWM Module Flowchart

The PWM signal was specified to run at a frequency of 1 kHz. Every pulse of the signal would go through the flowchart in Figure 17. The module was created using a counter and a comparison variable. The module would output a low signal until the counter passed the comparison variable, and then output a high signal until the full period was complete. The module would continue this cycle until the variable was changed, and then produced the new PWM signal. The implementation of this module shown in Fig 18.

Fig. 18 Oscilloscope View of PWM Module Implementation

Conclusion

An FPGA board was selected for closed loop control of rotary inductrack magnetic levitation system height. The user will input a desired levitation height into the FPGA. The desired levitation height will be converted to a desired velocity. The error between the actual velocity and desired velocity is used by a discrete lead compensator with integral action to generate a PWM signal. This signal drives the power electronics which control the motor speed. All of the subsystems have been tested and are working correctly. Unfortunately, the complete integration and function of each module as a whole was not able to be completed before the end of the semester. This is due to difficulties encountered, mostly through the passing of signals between modules.

Patents

Coffey; Howard T. Propulsion and stabilization for magnetically levitated vehicles U.S. Patent 5,222,436 June 29, 2003

Coffey; Howard T. Magnetic Levitation configuration incorporating levitation, guidance and linear synchronous motor U.S. Patent 5,253,592 October 19, 1993

Lamb; Karl J. ; Merrill; Toby ; Gossage; Scott D. ; Sparks; Michael T. ;Barrett; Michael S. U.S. Patent 6,510,799 January 28, 2003

Levi;Enrico; Zabar;Zivan Air cored, linear induction motor for magnetically levitated systems U.S. Patent 5,270,593 November 10, 1992

References

[1] Kyle Gavelek, Victor Panek, Christopher Smith. Senior Project. "Closed Loop Control of Halbach Array Magnetic Levitation System Height". Final Report, May 2013.

[2] Dirk DeDecker, Jesse VanIseghem. Senior Project. "Development of a Halbach Array Magnetic Levitation System". Final Report, May 2012.

[3] Glenn Zomchek. Senior Project. "Redesign of a Rotary Inductrack for Magnetic Levitation Train Demonstration". Final Report, May 2007.

[4] Paul Friend. Senior Project. Magnetic Levitation Technology 1. Final Report, May 2004.

[5] Post, Richard F., Ryutov, Dmitri D., "The Inductrack Approach to Magnetic Levitation," Lawrence Livermore National Laboratory.

Appendix A

Data sheet for FB180 MOSFET

0.05

*C/W

R_{yic} R_{ycs}

Data Sheet for 3120 optocoupler

Appendix A (continued)

morna	ional			2011
ior Rea	ctitier		IN J	2011
		HEXEE	T [®] Power M	OSEET
Advanced	Desesso Technology	112/01 2	Tonerm	
 Advanced 	Process Technology	, D		
475to Operating Temperature			V _{DSS} = 1	100∨
 175°C Ope 	erating Temperature			
 Fast Switch 	hing	(H A) Rescue = 0.200		
 Fully Avala 	nche Rated	G \ [T] T/]	DS(on) =	0.2052
	I			
Description			$I_{\rm D} = 9.$	/A
Fifth Generation	HEXFETs from International Rectifier	15		
utilize advanced	processing techniques to achieve			
benefit combine	d with the fast switching speed and			
ruggedized dev	vice design that HEXFET Power			
MOSFETs are w	ell known for, provides the designer	60	<u> </u>	
with an extremel	y efficient and reliable device for use	M	1800	
in a wide variety	of applications.			
The TO 220 ear	kana is universally preferred for all		1111	
commercial-indu	strial applications at power dissipation			
levels to approx	imately 50 watts. The low thermal		100	
resistance and	low package cost of the TO-220	TO	22048	
contribute to its	wide acceptance throughout the	0.0		
industry.				
Absolute Ma	ximum Ratings			
	Parameter	Map	L.	Units
l₀ @ T₀ = 25°C	Parameter Continuous Drain Current, V _{GS} @ 10V	Max 9.7	L	Units
l ₀ @ T _c = 25°C l ₀ @ T _c = 100°C	Parameter Continuous Drain Current, V _{GS} @ 10V Continuous Drain Current, V _{GS} @ 10V	9.7 6.8	L	Units
lo@Tc=25°C lo@Tc=100°C low	Parameter Continuous Drain Current, V _{GB} @ 10V Continuous Drain Current, V _{GB} @ 10V Pulsed Drain Current ①	Max 9.7 6.8 38	L	Units A
l ₀ @ T _C = 25°C l ₀ @ T _C = 100°C l ₀ M P ₀ @ T _C = 25°C	Parameter Continuous Drain Current, V _{GS} @ 10V Continuous Drain Current, V _{GS} @ 10V Pulsed Drain Current ⊕ Power Dissipation	Max 9.7 6.8 38 48	L	Units A W
lo@Tc = 25°С lo@Tc = 100°С low Po@Tc = 25°С	Parameter Continuous Drain Current, V _{GB} @ 10V Continuous Drain Current, V _{GB} @ 10V Pulsed Drain Current @ Power Dissipation Linear Derating Factor	Max 9.7 0.8 38 48 0.33	2	Units A W W*C
lo @ T _C = 25°С lo @ T _C = 100°С loм P _D @T _C = 25°С V _{QS}	Parameter Continuous Drain Current, V _{OB} @ 10V Continuous Drain Current, V _{OB} @ 10V Pulsed Drain Current 0 Power Dissipation Linear Disartong Factor Gateto-Source Voltage	Mao 9.7 6.8 38 48 0.33 <u>± 2</u>	2 0 0	Units A W W*C V
I ₀ @ T _C = 25°C Io @ T _C = 100°C Iom P _D @T _C = 25°C V _{OS} E _{AS}	Parameter Continuous Drain Current, Vos @ 10V Continuous Drain Current, Vos @ 10V Poliego Drain Current 0 Power Dissipation Univer Derating Factor Catelio-Source Voltage Single Pulse Availanche Energy0	Mao 9.7 6.8 38 48 0.33 ± 22 91	L 2 0	Units A W W*C V mJ
l₀ @ T _c = 25°C l₀ @ T _c = 100°C l₀m P₀ @T _c = 25°C V _{GS} E _{AS} l₀R	Parameter Continuous Drain Current, Vos @ 10V Continuous Drain Current, Vos @ 10V Pulseo Drain Current 0 Power Disspation Linear Denting Factor Gateto-Source Votage Single Pulse Avalandhe Energy2 Avalandhe Currentt	Mao 9.7 6.8 38 48 0.33 ± 2 91 91 5.7	r. 2 0	Units A W W*C V mJ A
l₀ @ T _c = 25°C l₀ @ T _c = 100°C l₀m P₀ @T _c = 25°C V _{G8} E _{AS} l _{AR} E _{AR}	Parameter Continuos Dran Current, V _{ol} @ 10V Continuos Dran Current, V _{ol} @ 10V Drates Dran Current 0: Power Disspon Linaar Dentring Factor Sate-to-Source Voltage Single Fulse Avalandre Energy/0 Avalandre Current1: Repetitive Avalandre Energy/0	Mao 9.7 6.8 388 48 0.33 2 2 2 91 5.7 5.7 4.8	r. 2 0	Units A W W [#] C V M [#] C V M A mJ
l ₀ @ T _c = 25°C l ₀ @ T _c = 100°C l ₀ @ T _c = 100°C V ₀ @ T _c = 25°C V ₀ @ T _c = 25°C V ₀ @ T _c = 25°C l ₀ @ T _c = 25°C	Parameter Darimous Dran Currett, Voll @ 10V Continuous Dran Currett, Voll @ 10V Pulsed Dran Currett 30 Power Disspation Linear Dentring Factor Galeto-Scorev Voltage Single Pulse Avalanche Energy20 Avalanche Currett3 Repetitive Avalanche Energy20 Peak Diode Recovery Julit 3 2	Mao 9.7 6.8 38 448 0.3 3 2 2 91 5.7 4.8 5.0	2	Units A W W/*C V mJ A mJ V/ns
$b_{0} \otimes T_{c} = 25^{\circ}C$ $b_{0} \otimes T_{c} = 100^{\circ}C$ $b_{0} \otimes T_{c} = 25^{\circ}C$ $P_{0} \otimes T_{c} = 25^{\circ}C$ V_{cs} E_{AS} L_{AR} G_{AR} G_{VOR} T_{c}	Commons Dran Curret, Voji @ 107 Commons Dran Curret, Voji @ 107 Commons Dran Curret, Voji @ 107 Power Disspation Power Disspation Caste Disspation Caste Disspation Caste Dissuance Energy: Avalance Curretti Repetitive Avalanche Energy: Peak Diode Recovery drift 3 Operandig Jureton and	Mao 9.7 6.8 38 48 0.33 2 2 91 5.7 4.8 5.0 5.0 4.5 5.0 4.55 to 4	2 0 175	Units A W W*C V mJ A mJ V/ns
	Parameter Continuos Dran Currett, Vol. @ 10V Continuos Dran Currett, Vol. @ 10V Pulsed Dran Currett 30 Dever Disspation Linear Dentroj Factor Galeto-Scurce Voltage Single Pulse Avalanche Energy20 Avalanche Curretti 5 Repetitive Avalanche Energy20 Peak Diode Recovery 30/41 30 Operating Junction and Storage Temperature Range	Mao 9.7. 6.8 38 48 48 0.33 2.2 91 6.7. 4.8 5.0 -55 to 4	2 D 175	Units A W W/°C V mJ A mJ V/ns *C
$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Parameter Controus Dan Curret, Voj @ 107 Controus Dan Curret, Voj @ 107 Alded Dan Sorret 0 Linar Decing Fator Catelo-Source Volage Single Pate AutoAnde Energy0 RestEtto AutoAnde Energy0 Pesit Doce Recovery 04/3 0 Operand Juncolande Energy0 RestEto AutoAnde Energy0 RestEt	Mao 9.7 6.8 3 8 4 8 0 3 3 2 2 9 1 5.7 4.8 5.0 -55 to + 300 (1.8mm fr	2 0 175 rom case)	Units A W W//C V mJ A mJ V/ns *C
$\label{eq:constraint} \begin{split} & b_{0} \otimes T_{c} = 25^{*C} \\ & b_{0} \otimes T_{c} = 100^{*C} \\ & b_{M} \\ & P_{0} \otimes T_{c} = 25^{*C} \\ & V_{OS} \\ & V_{OS} \\ & E_{AS} \\ & L_{A} \\ & E_{AS} \\ & b_{V} \\ & E_{AS} \\ & b_{V} \\ & T_{S} \\ & T_{STO} \\ \end{split}$	Parameter Continuous Dran Current, Voji @ 10V Continuous Dran Current, Voji @ 10V Pulsed Dran Current 30 Dever Disspation Linear Derating Factor Galet-D-Scurve Voltage Single Pulse Avalandte Energy0 Pask Diode Networks 2014 Rejettive Avalandte Energy0 Pask Diode Networks 2014 Departing Junction and Soldering Temperature, Forto Seconds Soldering Temperature, Forto Seconds	Mao 9,7, 6,8, 38 46 0,0,3 4,2 91 5,7, 4,8 5,00 -55 to + 300 (1.8mm ft 10 lbfm (1	2 0 175 rom case) .1N-m)	Units A W W ⁴ C V ⁴ C M A mJ V/ns *C
l₀ @ T _c = 25 ⁴ C b @ T _c = 100 ⁴ C b @ T _c = 100 ⁴ C b @ T _c = 25 ⁴ C V ₀₆ E _{A6} dwidt T _j T _{5T0} Thermal Res	Common Parameter Common Dana Curret, Voji @ 107 Common Dana Curret, Voji @ 107 Common Dana Curret, Voji @ 107 Power Disspation Linear Dearley Safor Cate-to-Source Volage Single Pute Availanche Energyo Reakt Under Recevery Sirk 3 Departarg Jundanche Energyo Reakt Diode Recovery Sirk 3 Operande Jundanche Energyo Reakt Diode Recovery Sirk 3 Operande Jundanche Energyo Reakt Diode Recovery Sirk 3 Operande Jundanche Energyo Reakt Diode Recovery Sirk 3 Source Temperature, Entry Bisconds Mounting Iangue, 5-32 or MS sever Statance	Mao 6,7 6,8 8 8 8 9 1 8 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	L 2 0 0 175 rom case)	Units A W W ⁴ C V mJ A mJ V/ns *C
$\label{eq:rescaled_constraints} \begin{split} & l_{0} \oplus T_{c} = 25^{\circ}C \\ & l_{0} \oplus T_{c} = 100^{\circ}C \\ & l_{0} \oplus T_{c} = 25^{\circ}C \\ & V_{08} \\ & V_{08} \\ & E_{85} \\ & U_{08} \\ $	Parameter Continuos Dran Currett, Voii @ 10V Continuos Dran Currett, Voii @ 10V Pulsed Dran Currett (2) Power Osspakow Sambo Scuret Robert Sambo Scurett (2) Sambo Scurett (2) Parameter Sambo Parating Jundanch Energyo Past Dade Hoosevey (24 3) Operating Jundanch Energyo Past Dade Hoosevey (24 3) Operating Jundanch Energyo Past Dade Hoosevey (24 3) Operating Jundanch Energyo Saldering Temperature, for 10 seconds Mounting Iorgue, 5-32 or M3 srew Istance Parameter	Max 9.7 6.8 38 48 48 49 45 50 50 50 50 50 50 50 50 50 7 55 10 84 50 7 7 9 7 7 9 7 7 9 7 9 7 9 7 9 7 9 7 9	2 0 175 rom case) .1N-m) Max.	Units A Wi ^{rc} V mJ A mJ V/ns *C
b @ T ₀ = 25 ⁴ ℃ b @ T ₀ = 100 ⁴ ℃ b @ T ₀ = 100 ⁴ ℃ b @ T ₀ = 25 ⁴ ℃ V ₀₅ E _{A5} dv/dt T ₁ T ₅ T0 Thermal Res R _{b0}	Continuous Dan Curret, Vaji @ 107 Continuous Dan Curret, Vaji @ 107 Continuous Dan Curret, Vaji @ 107 Prese Dispation Linara Decining Salar Caste-Dispation Caste-Dispation Currets Repetitive Autoache Energyo Peak Dudoe Ricovery Girl (3 Coperating Jurokanche Energyo Reak Dudoe Ricovery Girl (3 Coperating Jurokanche Energyo Reak Dudoe Ricovery Girl (3 Coperating Jurokanche Energyo Soldering Temperature, End Storgen Energenature, End Storgen Energenature, End Storgen Energenature, End Storgen Storgenature, Sto	Max 87 87 88 88 48 033 22 91 87 48 50 55 10 300 (16mm) 10 BMn (1 10 BMn (1 7	L 2 0 175 rom case) .1N-m) Max. 3.1	Units A W W V V A mJ A VIns C V Units
lo @ T_c = 25% lo @ T_c = 10% C low Po @T_c = 25% C Vos Eas Los Ty Tatto Thermal Res Ruc Ruc Ruc	Parameter Continuos Dran Currett, Voji @ 10V Continuos Dran Currett, Voji @ 10V Pulsed Dran Currett (J) Power Osspakov Saleb-Scuret (J) Saleb-Scuret Saleb Saleb Scuret Saleb Saleb Scuret Saleb Parater Junach Energyo Pias Indea Recovery 246 3 Operating Junach Energyo Pias Indea Recovery 246 3 Operating Junach Energyo Pias Indea Recovery 246 3 Operating Junach Energyo Saleting Temperature, 5rd 10 seconds Mounting Iorgue, 5-32 or M3 srew Istance Parameter Juncton S-Case	Maa 07 07 08 38 48 38 48 38 49 32 44 32 45 50 -55 56 -355 10 10 BHn (1) Typ. 0.50 55	L 2 2 0 0	Units A W W/C V M A A M V/ns *C Units *CW
6 @ T ₀ = 25 ⁴ C 6 @ T ₀ = 100 ⁴ C 100 100 100 100 100 100 100 10	Common Praameter Commons Dran Curret, Val @ 107 Commons Dran Curret, Val @ 107 Commons Dran Curret, Val @ 107 Power Disspation Linear Dearley Factor Caste-Dissues Volage Single Pute Availanche Energyo Reakt Dudon Handhe Energyo Reakt Dudon Handhe Energyo Reakt Dudon Handhe Energyo Reakt Dudon Honower Single Solering Emperature, for 10 seconds Mounting Iangua - 3.2 or Mo seve Istance Parameter Darameter Darameter Caste-Disnik, File, Crease Surface Juncton Io-Caste	Maa 87 87 86 80 80 87 87 87 87 87 87 87 87 87 87	L 2 0 -175 rom case) .1N-m) Max. 3.1 	Units A W W*C V MJ A MJ V/ns *C Units

Data Sheet for IRF520N

Appendix B

All code can be shared by sending a request to <u>cwest@mail.bradley.edu</u>

Appendix C

All results can be shared by sending a request to <u>cwest@mail.bradley.edu</u>